Начертательная геометрия

Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Инженерная графика
Начертательная геометрия
ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ
Пересечение поверхностей цилиндра и призмы
Примеры построения линии пересечения
многогранников
Вырожденные поверхности второго порядка
Гиперболический параболоид
Двуполостный гиперболоид
Линейчатые поверхности
Вспомогательные секущие поверхности
Применение способа секущих плоскостей
Построение плоскости, касательной к
поверхности в данной точке
Поверхности второго порядка

Применение способа секущих плоскостей в случаях линейчатых поверхностей с плоскостью параллелизма.

Две поверхности заданы геометрической частью определителя: a (l, i) и b(m, n, П1). Необходимо построить очерки поверхностей и найти линию их пересечения (рис. 16).

Решение: 1. Строим очерк поверхности a, n геометрической части определителя видно, что поверхность a – сфера. Ее горизонтальный и фронтальный очерки – окружности радиуса R. 2. Строим каркас линейчатой поверхности. Так как плоскость параллельна П1 , то фронтальные проекции образующих параллельны оси Х12. Задав на фронтальной проекции каркас определенной плоскости линий (на рис. 16 четыре линии), строим горизонтальные проекции этих образующих. 3. Для построения линии пресечения поверхностей применяем в качестве посредников секущие плоскости. Положение секущих плоскостей надо выбирать такими, чтобы они пересекали заданные поверхности по простым для построения линиям (прямым или окружностям). Этому условию удовлетворяют горизонтальные плоскости. Горизонтальные плоскости параллельны плоскости параллелизма коноида (П1), поэтому они будут пересекать коноид по прямым линиям. Сферу такие плоскости пересекают по параллелям.

Рис. 16

Например, плоскость g пересекает коноид b по образующей 1,1', а' сферу по параллели Рa. Фронтальная проекция параллели (Р2a) прямая, равная диаметру параллели, а горизонтальная проекция (Р1a) – окружность. На горизонтальной проекции в пересечении параллели Р1a и образующей 1, 11' определяется проекцией двух точек линии пресечения поверхности а и b. По горизонтальным проекциям точек А1 и В1 строим их фронтальные проекции. Повторив операцию, получим серию точек линии пересечения, обвод которых даст линию пересечения.

Экватор и главный меридиан сферы разграничивает линию на видимые и не видимые части.

1.6.Построение развёрток.

Развёрткой поверхности называется фигура, получаемая совмещением развёртываемой поверхности с плоскостью.

Развёртываемыми называются поверхности, которые совмещаются с плоскостью без разрывов и складок.

К развёртываемым поверхностям относятся гранные поверхности, а из криволинейных только цилиндрическая, коническая и торс.

Развёртки делятся на точные (развёртки гранных поверхностей), приближённые (развёртки цилиндра, конуса, торса) и условные (развёртки сферы и других неразвертываемых поверхностей).

1.6.1. Развёртки гранных поверхностей.

Выполнить развёртку пирамиды заданной проекциями на рис.17.

Рис.17

Для построения развёртки находим истинные величины всех рёбер пирамиды и строим развёртку каждой грани, как треугольник по трём сторонам.

В данном случае рёбра основания на горизонтальную проекцию спроецировались в истинную величину. Истинную величину боковых рёбер находим любым способом. На рис.17 она найдена вращением вокруг проецирующей прямой.

Построить развёртку наклонной призмы.

Развёртку можно выполнить способом нормального сечения и способом раскатки.

При применении способа нормального сечения (рис.18) необходимо:

Пересечь поверхность плоскостью перпендикулярно рёбрам (a).

Найти истинную величину нормального сечения (на рис.18 это выполнено методом замены плоскостей проекций).

Развернуть ломаную линию нормального сечения в прямую.

Восстановить в точках излома перпендикуляры.

Отложить на перпендикулярах истинные величины отрезков рёбер

( 1A¢, 1A0, 2B¢, 2B0 и т.д.) и провести отрезки A0B0, B0C0, C0A0, A¢B¢, B¢C¢, C¢A¢.Так как боковые рёбра призмы фронтальные прямые, то на П2 они спроецировались в натуральную величину. Отрезки на развёртке 1A¢= =12A2¢, 1A0=12A2 и т.д.

Рис.18.

Способ раскатки применим в случае, если рёбра призмы параллельны плоскости проекций и известна истинная величина рёбер одного из оснований (рис.18).

Раскатка фигуры представляет процесс совмещения граней призмы с плоскостью, при которых истинный вид каждой грани получается вращением вокруг её ребра.

Точки A, B, C при раскатке перемещаются по дугам окружностей, которые изображаются на плоскости П2 прямыми, перпендикулярными к проекциям рёбер призмы. Вершины развёртки строятся следующим образом: из точки A2 радиусом R1=A1B1 (истинная длина AB) делаем засечку на прямой B2B0, перпендикулярной B2B2¢. Из построенной точки B0 радиусом R2=B1C1 делается засечка на прямой C2C0^C2C2¢. Затем засечкой из точки C0 радиусом R3=A1C1 на прямой A2A0^A2A2¢. Получаем точку A0. Точки A2B0C0A0 соединяют прямыми. Из точек A0B0C0 проводим линии, параллельные рёбрам (A2 A2¢), откладываем на них истинные величины боковых рёбер А2A¢, B2B¢, C2C¢. Соединяем точки A¢B¢C¢A¢ отрезками прямых.

Развёртки кривых поверхностей.

Теоретически можно получить точную развёртку, т.е. развёртку, в точности повторяющую размеры развёртываемой поверхности. Практически, при выполнении чертежей, приходится мириться с приближённым решением задачи, если предположить, что отдельные элементы поверхности аппроксимируются отсеками плоскостей. При таких условиях выполнение приближённых развёрток цилиндра и конуса сводится к построению развёрток вписанных в них (или описанных) призмы и пирамиды.

На рис.19 приведён пример выполнения развёртки конуса.

Рис.19.

Вписываем в конус многогранную пирамиду. Из точки S проводим дугу радиусом, равным истинной величине образующей конуса (S212) и на дуге откладываем хорды 1121; 2131 . . . 8111, заменяющие дуги 1121;2131 . . . 8111.

Для нахождения любой точки на развёртке необходимо через заданную точку (A) провести образующую, найти место этой образующей на развёртке (2B=21B1), определить истинную величину отрезка SA или AB и отложить его на образующей на развёртке. Любая линия на поверхности состоит из непрерывного множества точек. Найдя на развёртке необходимое количество точек способом, описанным для точки A и выполнив обводы этих точек, получим линию на развёртке. При построении развёрток наклонных цилиндрических поверхностей применимы способы нормального сечения и раскатки.

Любую неразвёртываемую поверхность также можно аппроксимировать многогранной поверхностью с любой заданной точностью. Но развёртка такой поверхности не будет непрерывной плоской фигурой, так как эти поверхности не развёртываются без разрывов и складок.

Пример. Построить на горизонтальной проекции очерк конуса, ось которого i параллельна плоскости П2 и наклонена к плоскости П1.

Аксонометрические проекции. Аксонометрические изображения широко применяются благодаря хорошей наглядности и простоте построения.

Треугольник следов и его свойства. Теорема Польке

Прямоугольная изометрия В этом виде аксонометрии все углы между осями равны 120 градусов , а все показатели искажения равно 0,82

Построение аксонометрических изображений. Построение в изометрической проекции плоских фигур.

Начертательная геометрия лекции и примеры решения задач