Начертательная геометрия

Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Инженерная графика
Начертательная геометрия
ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ
Пересечение поверхностей цилиндра и призмы
Примеры построения линии пересечения
многогранников
Вырожденные поверхности второго порядка
Гиперболический параболоид
Двуполостный гиперболоид
Линейчатые поверхности
Вспомогательные секущие поверхности
Применение способа секущих плоскостей
Построение плоскости, касательной к
поверхности в данной точке
Поверхности второго порядка

Гиперболический параболоид

Определение

Пр.2.4.1.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида  , называется гиперболическим параболоидом.


Свойства гиперболического параболоида:

1°. Гиперболический параболоид - неограниченная поверхность, поскольку из его канонического уравнения следует, что  - любое.

2°. Гиперболический параболоид обладает

- осевой симметрией относительно оси ;

- плоскостной симметрией относительно координатных плоскостей  и .

3°. В сечении гиперболического параболоида плоскостью, ортогональной оси координат , получается гипербола, а плоскостями ортогональными осям  или  - парабола. (Рис. Пр.2.4.1.)

Например, рассматривая скущую плоскость z=z0>0 , получаем следующее уравнение линии сечения

,

являющейся гиперболой. При  уравнение гиперболы будет иметь вид:

.

x

 z

Рисунок Пр.2.4.1.

y

С другой стороны, при сечении гиперболического параболоида плоскостью x=x0 получаем плоскую кривую , являющуюся параболой. Для случая сечения плоскостью  уравнение аналогично и имеет вид .

Из полученных уравнений следует, что гиперболический параболоид может быть получен поступательным перемещением в пространстве параболы так, что ее вершина перемещается вдоль другой параболы, ось которой параллельна оси первой параболы, а ветви направлены противоположно, причем их плоскости взаимно перпендикулярны.


4°.  Гиперболический параболоид имеет два семейства прямолинейных образующих.

Если записать уравнение данной поверхности в виде  , то можно прийти к заключению, что при любых значениях параметра a точки, лежащие на прямых  и , также принадлежат и гиперболическому параболоиду, поскольку почленное перемножение уравнений плоскостей, задающих эти прямые, дает уравнение гиперболического параболоида.

Заметим, что для каждой точки гиперболического параболоида, существует пара прямых, проходящих через эту точку и целиком лежащих на гиперболическом параболоиде. Уравнения этих прямых могут быть получены (с точностью до некоторого общего ненулевого множителя) путем подбора конкретных значений параметра a.

§Пр.2.5. Однополостный гиперболоид

Определение

Пр.2.5.1.

Поверхность, задаваемая в некоторой ортонормированной системе координат каноническим уравнением вида , называется однополостным гиперболоидом.

Свойства однополостного гиперболоида:

1°. Однополостный гиперболоид - неограниченная поверхность, поскольку из его канонического уравнения следует, что .

2°. Однополостный гиперболоид обладает

- центральной симметрией относительно начала координат;

- осевой симметрией относительно всех координатных осей;

- плоскостной симметрией относительно всех координатных плоскостей.


3°. В сечении однополостного гиперболоида плоскостью, ортогональной оси координат , получается эллипс, а плоскостями, ортогональными осям  или  - гипербола. (Рис. Пр.2.5.1.) Вывод уравнений для линий сечения аналогичен рассмотренным ранее случаям.

4°. Однополостный гиперболоид имеет два семейства прямолинейных образующих. Записав уравнение данной поверхности в виде , можно прийти к заключению, что при любых a и b,  точки, лежащие на прямых

  и ,

будут принадлежать и однополостному гиперболоиду, поскольку почленное перемножение уравнений плоскостей, задающих эти прямые, дает уравнение однополостного гиперболоида.

Для каждой точки однополостного гиперболоида существует пара прямых, проходящих через эту точку и целиком лежащих на однополостном гиперболоиде. Уравнения этих прямых могут быть получены путем подбора конкретных значений a и b.

 x

 z

Рисунок Пр.2.5.1.

y

Пересечение конуса с плоскостью В зависимости от направления секущей плоскости в сечении конуса вращения могут получиться различные линии, называемые вершину конуса, в его сечении получается пара прямых - образующие конуса ( рис 6.6, а). В результате пересечения конуса плоскостью, перпендикулярной к оси конуса, получается окружность

Пересечение поверхностей, когда  одна из них проецирующая К проецирующим поверхностям относятся: 1) цилиндр, если его ось перпендикулярна плоскости проекций; 2) призма, если ребра призмы перпендикулярны плоскости проекций, Проецирующая поверхность проецируется в линию на плоскость проекций. Все точки и линии, принадлежащие боковой поверхности проецирующего цилиндра или проецирующей призме проецируются в линию на ту плоскость, которой ось цилиндра или ребро призмы перпендикулярно.

Способ вспомогательных секущих сфер с постоянным центром Известно, что если центр сферы находится на оси какой- нибудь поверхности вращения, то сфера соосна с поверхностью вращения и в их пересечении получаются окружности AB,CD, EF, КL

Общие сведения о пересечении поверхности плоскостью. При пересечении любого тела е плоскостью получается некоторого вида плоская фигура, называемая сечением. Под сечением понимают ту часть секущей плоскости, которая находится внутри рассеченного тела и ограничена линией сечения. Линией сечения тела плоскостью является контур этого сечения

Метрические задачи Метрическими называются задачи, в которых приходится определять значения измеряемых величин - измерять величину угла между' двумя прямыми и расстояние между двумя точками. К метрическим относятся также задачи на построение угла и отрезка с наперед заданным соответственно градусной и линейной величины.

Начертательная геометрия лекции и примеры решения задач