Начертательная геометрия

Математика Электротехника Лабораторные работы Контрольная работа Конспект лекций Электроника Альтернативная энергетикаОптика Сопромат ЭлектростатикаНачертательная геометрия Архитектура Дизайн

Инженерная графика
Начертательная геометрия
ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ
Пересечение поверхностей цилиндра и призмы
Примеры построения линии пересечения
многогранников
Вырожденные поверхности второго порядка
Гиперболический параболоид
Двуполостный гиперболоид
Линейчатые поверхности
Вспомогательные секущие поверхности
Применение способа секущих плоскостей
Построение плоскости, касательной к
поверхности в данной точке
Поверхности второго порядка

В начертательной геометрии поверхность рассматривается как совокупность последовательных положений перемещающейся в пространстве линии, называемой образующей.

Если одну из линий поверхности принять за направляющую q и перемещать по ней по определенному закону образующую l, получим семейство образующих поверхности, определяющих поверхность (рис. 1).

Рис. 1

Для задания поверхности на чертеже введено понятие определителя поверхности.

Определитель – это совокупность условий, необходимых и достаточных для однозначного задания поверхности.

Определитель состоит из геометрической части, содержащей геометрические фигуры, и закона образования поверхности. Например, геометрической частью определителя фигуры a(l, q) на рис.1 являются образующая l и направляющая q, положение которых задано на чертеже. Закон образования: прямая l, перемещаясь в пространстве, всегда касается q, оставаясь параллельной направлению S. Эти условия однозначно определяют цилиндрическую поверхность. Для любой точки пространства можно решить вопрос принадлежности ее поверхности (АÎa, вÏa).

Геометрическая часть определителя конической поверхности b(q, S) состоит из направляющей q и вершины S (рис. 2). Закон образования конической поверхности: образующая прямая l, перемещаясь по направляющей q, всегда проходит через вершину S, образуя непрерывное множество прямых конической поверхности.

Рис. 2.

Поверхности, полученные непрерывным движением, называют кинематическими. Такие поверхности относятся к точным, закономерным, в отличие от незакономерных или случайных.

Поверхности, образованные движением прямой линии, именуют линейчатыми , кривой линией – нелинейчатыми.

По закону движения образующей различают поверхности с поступательным перемещением образующей, с вращательным движением образующей – поверхности вращения, с винтовым движением образующей – винтовые поверхности.

Поверхности могут быть заданы каркасом. Каркасной называют поверхность, которая задается некоторым числом линий, принадлежащих такой поверхности (рис. 3).

Рис. 3.

Зная координаты точек пересечения линий, можно построить чертеж каркасной поверхности.

Поверхности вращения.

В числе кривых поверхностей широко распространены поверхности вращения. Поверхностью вращения называют поверхность, получаемую вращением какой-либо образующей вокруг неподвижной прямой – оси поверхности.

Поверхность вращения может быть образована вращением кривой линии (сфера, тор, параболоид, эллипсоид, гиперболоид и др.) и вращением прямой линии (цилиндр вращения, конус вращения, однополостной гиперболоид вращения).

Из определения поверхности вращения вытекает, что геометрическая часть определителя a(i, l) поверхности вращения a должна состоять из оси вращения i и образующей l. Закон образования поверхности, вращение l вокруг I позволяет построить непрерывное множество последовательных положений образующей поверхности вращения.

Рис. 4.

Из множества линий, которые можно провести на поверхностях вращения, параллели (экватор) и меридианы (главный меридиан) занимают особое положение. Применение этих линий значительно упрощает решение позиционных задач. Рассмотрим эти линии.

Каждая точка образующей l (рис. 4) описывает вокруг оси i окружность, лежащую в плоскости, перпендикулярной оси вращения. Эту окружность можно представить как линию пересечения поверхности некоторой плоскостью (b), перпендикулярной к оси поверхности вращения. Такие окружности называют параллелями (Р). Наибольшую из параллелей именуют экватором, наименьшую – горлом.

Рис. 5 Рис. 6

На рис. 5 параллель РА точки А – экватор, параллель РВ точки R –горло поверхности.

В случае, если ось поверхности i перпендикулярна плоскости проекций, то параллель проецируется на эту плоскость окружностью в истинную величину (Р1А), а на плоскость проекций, параллельную оси – прямой (Р2А), равной диаметру параллели. В этом случае упрощается решение позиционных задач. Связывая любую точку поверхности (например С) с параллелью, легко можно найти положение проекций параллели и точку на ней. На рис. 5 по проекции С2 точки С, принадлежащей поверхности a, с помощью параллели Рс найдена горизонтальная проекция С1.

Плоскость, проходящую через ось вращения, называют меридиональной. На рис. 4 это плоскость g. Линия пересечения поверхности вращения меридиональной плоскостью называется меридианом поверхности. Меридиан, лежащий в плоскости, параллельной плоскости проекций, называется главным (m0 на рис. 4,5). При таком положении меридиан проецируется на плоскость П2 без искажения, а на П1 – прямой параллельной оси Х12. Для цилиндра и конуса меридианы являются прямыми линиями.

Экватор Р2 (рис. 6) и главных меридиан (m) разграничивают поверхность на видимую и невидимую части.

На рис. 6 экватор поверхности a получен в результате сечения поверхности плоскостью d(Р=ad), а главный меридиан – плоскостью g(m=ag).

Принадлежность прямой и точки заданной плоскости Прямая принадлежит плоскости, если две её точки принадлежат этой плоскости

Главные линии плоскости В плоскости можно расположить бесчисленное количество прямых, среди которых будут линии уровня плоскости, т.е. прямые, параллельные плоскостям проекций, и прямые, перпендикулярные к этим линиям уровня, так называемые линии наибольшего уклона плоскости. Такие прямые называются главными (или особыми) линиями плоскости. К первым относятся горизонтальные линии плоскости (горизонтали плоскости), а также фронтальные и профильные (фронтали плоскости, профильные прямые плоскости).

Построение точки пересечения прямой и плоскости Прямая линия в пространстве может принадлежать плоскости (этот случай был рассмотрен ранее в пункте 3.4 настоящей главы), а также быть параллельной плоскости или пересекать её. При пересечении прямой линии с плоскостью следует выделить частный случай, когда прямая перпендикулярна плоскости. Первый случай был разобран в пункте 3.4, в котором рассматривалась одна из основных графических операций – построение линий, принадлежащих плоскости.

Параллельность прямой и плоскости При решении вопроса параллельности прямой линии и плоскости необходимо опираться на известное положение стереометрии: прямая параллельна плоскости, если она параллельна одной из прямых, лежащих в этой плоскости.

Параллельность плоскостей Рассмотрим случай взаимной параллельности плоскостей. Если плоскости параллельны, то всегда в каждой из них можно построить по две пересекающиеся между собой прямые линии так, чтобы прямые одной плоскости были соответственно параллельны двум прямым другой плоскости

Машинная графика Одно из замечательных достижений человеческого гения в последние десятилетия -быстрое развитие электроники и вычислительной техники.

Метод проецирования. Для построения изображения предметов на плоскости пользуютсь методом проецирования. Слово «проекция» - латинское, от глагола projecere, что в переводе означает «бросать вперед».

Проецирование точки на две плоскости проекций. Четверти пространства Две взаимно перпендикулярные плоскости проекций П1 – горизонтальная плоскость проекций, П2 – фронтальная плоскость проекций делят пространство на четыре квадранта (четверти)

Проекции точки на три плоскости проекций. Октанты пространства В начертательной геометрии принято от пространственного изображения точки и ее проекций переходить к плоскому, или комплексному, чертежу, образованному вращением плоскости проекций вокруг осей проекций

Точки проекций общего и частного положения. Наиболее удобной для фиксирования положения геометрической фигуры в пространстве является декартова система координат, состоящая из трех взаимно перпендикулярных плоскостей

Начертательная геометрия лекции и примеры решения задач