Сопромат лекции и примеры решения задач

Электротехника
ТОЭ типовые задания примеры
решения задач
Радиотехнические схемы Генераторы
Лабораторные работы
Контрольная работа
Конспект лекций
Электротехника, электроника
Линейные цепи постоянного тока
Переменный ток. Приборы и оборудование
Комплексный метод расчета
цепей синусоидального тока
Электрические цепи с
взаимной индуктивностью
Расчет неразветвленных
магнитных цепей
Электромагнитные устройства
Трансформаторы
Однофазный асинхронный двигатель
Электронно-оптические приборы
Электронные усилители и генераторы
Источники питания электронных устройств
Измерение тока и напряжения
Работа электрической машины
постоянного тока в режиме генератора
История искусства
Стили в архитектуре и дизайне
Стиль АРТДЕКО
Париж оставался центром стиля арт-деко
Развитие традиционной архитектуры
Восточного Китая
ТВОРЧЕСТВО ЛЕ КОРБЮЗЬЕ
ТВОРЧЕСТВО  ВАЛЬТЕРА ГРОПИУСА
Людвиг Мис ван дер Роэ
ЭКОЛОГИЧЕСКИЙ ДОМ
Здание Калифорнийской Академии наук
История дизайна
Дизайн в моде
Литература о дизайне
Линия борьбы с академизмом
в искусстве и эстетике
Объяснение промышленного искусства
Дизайнерское проектирование
для промышленности
ТОМАС МАЛЬДОНАДО
Джордж Нельсон
ДИЗАЙН В ДЕЙСТВИИ
фирма «Вестингауз»
„ОЛИВЕТТИ" Фабрика пишущих машин
Активное развитие дизайна «Оливетти»
НОН-ДИЗАЙН
ДИЗАЙН В ДЕЙСТВИИ
авторские концепции дизайна
ДИЗАЙН И ИСКУССТВО
Европейский «артистический» дизайн
Первичность деятельности художника
Современный элитарный дизайн
Художественное проектирование
Индустриальный дизайн
Стиль в дизайне. Понятие "фирменный стиль"
Абстракционизм
ПЕРВЫЕ ШКОЛЫ ДИЗАЙНА Баухауз
ДИЗАЙН В ПРЕДВОЕННУЮ ЭПОХУ
ПОСЛЕВОЕННЫЙ ДИЗАЙН
ДИЗАЙН 60-х
АЛЬТЕРНАТИВНЫЙ ДИЗАЙН
Государственный дизайн
ДИЗАЙН-ТЕХНОЛОГИИ БУДУЩЕГО
Прикладное искусство Византии IV–VII века
Поверхности
Начертательная геометрия
Задачи по математике
Математика Методические указания
к выполнению контрольных работ
Решение линейных дифференциальных уравнений и систем
операционным методом
Область сходимости степенного ряда
Математический анализ
Пример решения типового задания
Найти значение производной функции
Линейная алгебра
Задачи по физике
Оптика
Электростатика
Энергетика
Системы теплоснабжения
Региональный опыт энергосбережения
Тепловые насосы
Проектирование аккумуляторов теплоты
Малая гидроэнергетика
Ветроэнергетика в России
Гелиоэнергетика
Активные гелиосистемы отопления зданий
Гидротермальные системы
Закрытые системы геотермального
теплоснабжения
Мини-теплоэлектростанция на отходах
Энергия морских течений
Водородная экономика
Основы технической механики
Сопротивление материалов
Контрольная работа
Шарнирное соединение деталей
Вычисления моментов инерции
однородных тел
 

Деформации и перемещения при кручении валов.

Для вычисления деформаций вала при кручении воспользуемся формулой (2.7)

f_17.gif          (2.17)

Деформация вала на длине z (взаимный угол сечений) равна

f_18.gif          (2.18)

Если крутящий момент и величина GIp, называемая жесткостью вала при кручении, постоянны на всем участке интегрирования, то

f_19.gif          (2.19)

Аналогично, для вала длиной l получим

f_20.gif          (2.20)

Эта формула по своей структуре аналогична формуле для определения деформаций при растяжении - сжатии.

Угол закручивания, приходящийся на единицу длины, называют относительным углом закручивания. Он равен

f_21.gif          (2.21)

Для обеспечения требуемой жесткости вала необходимо, чтобы наибольший относительный угол закручивания не превосходил допускаемого, т.е.

f_22.gif          (2.22)

Эта формула выражает условие жесткости вала при кручении. В этой формуле t2_7.gif- допускаемый относительный угол закручивания в радианах на единицу длины вала.

В большинстве случаев допускаемый относительный угол закручивания задают в градусах на 1 м длины, тогда из формулы (2.22) получим:

f_23.gif          (2.23)

Угол t2_7.gifвыбирают в зависимости от назначения вала и его размеров. Для валов средних размеров в "Справочнике машиностроителя" рекомендуется принимать допускаемый угол закручивания равным 0,5 градуса на 1 метр длины.

Из условия (2.23) можно определить диаметр вала по заданной жесткости. Получаем

f_24.gif          (2.24)

 


Построение эпюр угловых перемещений при кручении.

Имея формулы для определения деформаций и зная условия закрепления стержня, нетрудно определить угловые перемещения сечений стержня и построить эпюры этих перемещений. Если имеется вал (т.е. вращающийся стержень), у которого нет неподвижных сечений, то для построения эпюры угловых перемещений принимают какое-либо сечение за условно неподвижное.

2_12.gif

Рассмотрим конкретный пример (рис. 2.12, а). На рис. 2.12, б дана эпюра Тк.

Примем сечение в точке А за условно неподвижное. Определим поворот сечения В по отношению к сечению А.

По формуле (2.20) (см. здесь) найдем

t2_8.gif

где ТАВ - крутящий момент на участке АВ; lАВ - длина участка АВ.

Примем следующее правило знаков для углов поворота сечений: углы t2_9.gifбудем считать положительными, когда сечение поворачивается (если смотреть вдоль оси справа налево) против часовой стрелки. В данном случае t2_10.gifбудет положительным. В принятом масштабе отложим ординату t2_10.gif(рис. 2.12, в). Полученную точку К соединяем прямой точкой Е, так как на участке АВ углы изменяются по закону прямой линии [см. формулу 2.19, в которую абсцисса сечения z входит в первой степени]. Вычислим теперь угол поворота сечения С по отношению к сечению В. Учитывая принятое правило знаков для углов закручивания, получаем

t2_11.gif

Так как сечение В не неподвижное, то угол поворота сечения С по отношению к сечению А равен

t2_12.gif

Угол закручивания t2_13.gifможет получиться положительным, отрицательным и, в частном случае, равным нулю.

Предположим, что в данном случае угол t2_13.gifполучился положительным. Тогда, отложив эту величину в принятом масштабе вверх от эпюры, получим точку М. Соединяя точку М с точкой К, получим графмк углов закручивания t2_14.gifна участке ВС. На участке CD скручивания не происходит, так как крутящие моменты на этом участке равны нулю, поэтому там все сечения поворачиваются на столько же, на сколько поворачивается сечение С. Участок MN эпюры t2_14.gifздесь горизонтален. Читателю предлагается убедиться, что если принять за неподвижное сечение В, то эпюра углов закручивания будет иметь вид, представленный на рис. 2.12, г.

Пример 2.1. Определить диаметр стального вала, вращающегося с угловой скоростью W = 100 рад/с и передающего мощность N = 100 кВт. Допускаемо напряжение t2_3.gif= 40 МПа, допускаемый угол закручивания t2_7.gif= 0,5 град/м, G = 80000 МПа.

Решение. Момент передаваемый валом, определяется по формуле

T = N/W = 100 000 / 100 = 1000 Н * м

Крутящий момент во всех поперечных сечениях вала одинаков

Tк = Т = 1000 Н * м = 1 кН * м = 0,001 МН * м.

Диаметр вала по прочности определяем по формуле (2.15)

t2_15.gif

По формуле (2.24) определяем диаметр вала из условия жесткости

t2_16.gif

Диаметр вала в данном случае определяется из условия жесткости и должен быть принят равным d = 52 мм.

Пример 2.2. Подобрать размеры сечения трубчатого вала, передающего момент Т = 6 кН * м, при соотношении диаметров с = d/D = 0,8 и допускаемом напряжении t2_3.gif= 60 МПа. Сравнить вес этого трубчатого вала с валом равной прочности сплошного сечения.

Ответ. Размеры трубчатого вала: D = 9,52 см, d = 7,62 см. Плошадь сечения Ат = 25,9 квадратных см. Диаметр вала сплошного сечения d1 = 8 см. Площадь сечения Ас = 50,2 квадратных см. Масса трубчатого вала составляет 51% от массы сплошного вала.

Математика примеры решения задач