Сопромат лекции и примеры решения задач

Электротехника
ТОЭ типовые задания примеры
решения задач
Радиотехнические схемы Генераторы
Лабораторные работы
Контрольная работа
Конспект лекций
Электротехника, электроника
Линейные цепи постоянного тока
Переменный ток. Приборы и оборудование
Комплексный метод расчета
цепей синусоидального тока
Электрические цепи с
взаимной индуктивностью
Расчет неразветвленных
магнитных цепей
Электромагнитные устройства
Трансформаторы
Однофазный асинхронный двигатель
Электронно-оптические приборы
Электронные усилители и генераторы
Источники питания электронных устройств
Измерение тока и напряжения
Работа электрической машины
постоянного тока в режиме генератора
История искусства
Стили в архитектуре и дизайне
Стиль АРТДЕКО
Париж оставался центром стиля арт-деко
Развитие традиционной архитектуры
Восточного Китая
ТВОРЧЕСТВО ЛЕ КОРБЮЗЬЕ
ТВОРЧЕСТВО  ВАЛЬТЕРА ГРОПИУСА
Людвиг Мис ван дер Роэ
ЭКОЛОГИЧЕСКИЙ ДОМ
Здание Калифорнийской Академии наук
История дизайна
Дизайн в моде
Литература о дизайне
Линия борьбы с академизмом
в искусстве и эстетике
Объяснение промышленного искусства
Дизайнерское проектирование
для промышленности
ТОМАС МАЛЬДОНАДО
Джордж Нельсон
ДИЗАЙН В ДЕЙСТВИИ
фирма «Вестингауз»
„ОЛИВЕТТИ" Фабрика пишущих машин
Активное развитие дизайна «Оливетти»
НОН-ДИЗАЙН
ДИЗАЙН В ДЕЙСТВИИ
авторские концепции дизайна
ДИЗАЙН И ИСКУССТВО
Европейский «артистический» дизайн
Первичность деятельности художника
Современный элитарный дизайн
Художественное проектирование
Индустриальный дизайн
Стиль в дизайне. Понятие "фирменный стиль"
Абстракционизм
ПЕРВЫЕ ШКОЛЫ ДИЗАЙНА Баухауз
ДИЗАЙН В ПРЕДВОЕННУЮ ЭПОХУ
ПОСЛЕВОЕННЫЙ ДИЗАЙН
ДИЗАЙН 60-х
АЛЬТЕРНАТИВНЫЙ ДИЗАЙН
Государственный дизайн
ДИЗАЙН-ТЕХНОЛОГИИ БУДУЩЕГО
Прикладное искусство Византии IV–VII века
Поверхности
Начертательная геометрия
Задачи по математике
Математика Методические указания
к выполнению контрольных работ
Решение линейных дифференциальных уравнений и систем
операционным методом
Область сходимости степенного ряда
Математический анализ
Пример решения типового задания
Найти значение производной функции
Линейная алгебра
Задачи по физике
Оптика
Электростатика
Энергетика
Системы теплоснабжения
Региональный опыт энергосбережения
Тепловые насосы
Проектирование аккумуляторов теплоты
Малая гидроэнергетика
Ветроэнергетика в России
Гелиоэнергетика
Активные гелиосистемы отопления зданий
Гидротермальные системы
Закрытые системы геотермального
теплоснабжения
Мини-теплоэлектростанция на отходах
Энергия морских течений
Водородная экономика
Основы технической механики
Сопротивление материалов
Контрольная работа
Шарнирное соединение деталей
Вычисления моментов инерции
однородных тел
 

Статически неопределимые задачи.

При кручении, так же как и при растяжении, встречаются задачи, которые не могут быть решены с помощью одних только уравнений равновесия. В таких задачах количество неизвестных превышает число уранений равновесия. Порядок решения таких задач тот же самый, что и при решении статически неопределимых задач при растяжении (сжатии).

2_16.gif

Рассмотрим для примера стержень с двумя заделанными концами (рис. 2.16, а). Такой стержень статически неопределим, так как для нахождения двух реактивных моментов, возникающих в заделках, статика дает лишь одно уравнение равновесия.

Отбросим одну заделку, заменив ее действие неизвестным моментом Х (рис. 2.15, б). Дополнительное уравнение (называемое, как известно, уранением деформации или уравнением перемещений) получим из условия, что угол поворота сечения у отброшенной заделки, равный углу закручивания стержня под действием моментов Т и Х, равен нулю (t2_43.gif = 0).

В получившейся статически определимой системе, называемой основной системой, поворот сечения В происходит под действием внешнего момента и момента Х. Угол поворот сечения В под действием момента Х равен

t2_44.gif

где t2_45.gif

Угол поворота сечения В под действием момента Т равен

t2_46.gif

Подставляя эти значения и уравнение перемещений, получаем

t2_47.gif

Отсюда определяем Х.

После этого можно определить крутящий момент в любом сечении и построить эпюру Тк и эпюру углов закручивания. Для построения эпюры t2_14.gifдостаточно вычислить угол поворота сечения С. Он равен

t2_48.gif

Углы поворота сечений А и В равны нулю, а так как угол поворота сечения линейно зависит от расстояния [см. формулу (2.19)], то полученные точки эпюры можно соединить прямыми линиями. Эпюры Тк и t2_14.gifпредставлены на рис. 2.16, в, г.

Пример 2.5. Тонкостенная трубка из материала с модулем Gв вставлена в другую с модулем Gн. Один конец получившейся конструкции заделан, а к другому приложен внешний момент Т, действующий на обе трубки (рис. 2.17). Определить крутящие моменты, возникающие в поперечных сечения трубок.

Решение. Неизвестных крутящих моментов два: во внутренней трубке Тк.в и в наружной трубке Тк.н.

Уравнение равновесия одно:

Тк.в + Тк.н = Т.     (I)



2_17.gif

Задача один раз статически неопределима. Составляем уранение деформаций, приравнивая между собой углы поворота сечений на правом конце трубок (равные полным углам закручивания трубок): t2_49.gif

t2_50.gif    (II)

Полярный момент инерции сечения внутренней трубки - Iр.в, наружной - Iр.н. Они определяются, как для кольцевых сечений, по формулам (см. здесь). При небольшой толщине стенок для вычисления углов закручивания можно пользоваться формулой (2.39 см. здесь), которая при постоянной толщине t2_17.gifполучает вид

t2_51.gif,

где d = (dн + dв)/2 - средний диаметр трубки; s = Пd - длина средней окружности сечения трубки.

Из двух уравнений (I) и (II) определяют крутящие моменты в поперечных сечениях трубок, а затем по формуле - и напряжения. При значительной толщине стенок для определения напряжений следует пользоваться следующими формулами:

Рациональные формы сечений при кручении.

Из двух сечений с одним и тем же полярным моментом сопротивления (или в случае некруглого сечения одним и тем же Wк), а следовательно, с одним и тем же допускаемым крутящим моментом, рациональным будет сечение с наименьшей площадью, т.е. обеспечивающее наименьший расход материала. Так как отношение Wp/A (или Wк/A) является величиной размерной, то для сравнения различных сечений удобно применять безразмерную величину

t2_52.gif

(при некруглом сечении t2_53.gif), которую можно называть удельным моментом сопротивления при кручении. Чем больше t2_54.gif, тем рациональнее сечение.

Таблица 2.2

Тип сечения

t2_55.gif

Швеллер . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Двутавр . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Прямоугольное сечение при a/b = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
То же, a/b = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Квадрат. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Круглое сплошное сечение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Круговое кольцо при c = d/D = 0,5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
>> >> >> >> >> >> c = 0,9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0,04 - 0,05
0,05 - 0,07
0,1
0,18
0,21
0,28
0,37
1,16

Как видим, наименее выгодными при кручении являбтся швеллеры, двутавры, узкие прямоугольные сечения и наиболее выгодными - круглые кольцевые, особенно при малой толщине стенок.

Сравним площадь стержней трубчатого сечения Ат с площадью стержней сплошного сечения Ас при различных значениях с = d/D и при условии равной прочности. Из равенства полярных моментов сопротивления сплошного и кольцевого сечений имеем

t2_56.gif

Для равнопрочности должно соблюдаться условие

t2_57.gif

Отношение площадей сечения равно

t2_58.gif

Подставляя сюда значение D, найденное из условия равнопрочности, получаем

t2_59.gif

В таблице 2.3 приведены значения отношения Ат/Ас. Из этой таблицы видно, что применение трубчатых тонкостенных стержней дает большую экономию металла.

Таблица 2.3

c

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Ат/Ас

1

0,99

0,96

0,92

0,85

0,79

0,70

0,61

0,51

0,39

При подборе сечений по жесткости в качестве критерия экономичности профиля может служить безразмерная величина

t2_60.gif

(или t2_61.gifдля некруглых сечений), которая может быть названа удельным полярным полярным моментом инерции или удельной геометрической характеристикой крутильной жесткости.

В таблице 2.4 приведены значения jк для некоторых наиболее распространенных сечений.

Таблица 2.4

Тип сечения

Швеллер . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Двутавр . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Прямоугольное сечение при a/b = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
То же, a/b = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Квадрат. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Круглое сплошное сечение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Круговое кольцо при c = d/D = 0,5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
>> >> >> >> >> >> c = 0,9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0,010 - 0,011
0,009 - 0,015
0,031
0,115
0,14
0,16
0,264
1,52

Как видим, при расчете на жесткость преимущества кольцевых тонкостенных сечений по сравнению с другими типами сечений еще более возрастают. Сравнение площадей стержней круглого кольцевого и сплошного сечений при одинаковой жесткости представлено в таблице 2.5. В этой таблице Ат - площадь сечения стержня кольцевого трубчатого сечения, Ас - площадь сечения стержня сплошного круглого сечения.

Таблица 2.5

c

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

Ат/Ас

1

0,99

0,96

0,92

0,85

0,78

0,69

0,58

0,46

0,32

Сравнивая эту таблицу с таблицей 2.3., видим, что при расчете на жесткость применение трубчатых тонкостенных стержней позволяет получить еще большую экономию материала.

Математика примеры решения задач