Сопромат лекции и примеры решения задач

Математика Электротехника Лабораторные работы Контрольная работа Конспект лекций Электроника Альтернативная энергетикаОптика Сопромат ЭлектростатикаНачертательная геометрия Архитектура Дизайн

Изгиб. Определение напряжений.

Общие понятия о деформации изгиба.

Весьма часто стержни подвергаются действию поперечной нагрузки или внешних пар (рис. 3.1).

При этом в поперечных сечениях стержня возникают изгибающие моменты, т.е. внутренние моменты, плоскость действия которых перпендикулярна плоскости поперечного сечения стержня.

При действии такой нагрузки ось стержня искривляется.

Указанный вид нагружения называют изгибом. Стержни, работающие в основном на изгиб, обычно называют балками. Изгиб называют чистым, если изгибающий момент является единственным внутренним усилием, возникающим в поперечном сечении стержня.

Чаще, однако, в поперечных сечениях стержня наряду с изгибающими моментами возникают тоже и поперечные силы. Такой изгиб называют поперечным.

/info/3/img/3_1.gif

Если плоскость действия изгибающего момента (силовая плоскость) проходит через одну из главных центральных осей поперечного сечения стержня, изгиб называют простым или плоским (применяется также название: прямой изгиб).

Если плоскость действия изгибающего момента в сечении не совпадает ни с одной из главных осей сечения, изгиб называют косым.

Далее будет показано, что при плоском изгибе ось балки и после деформации остается в плоскости внешних сил - силовой плоскости. При косом изгибе плоскость деформации не совпадает с силовой плоскостью.

Изучение деформации изгиба начнем со случая чистого простого изгиба: в дальнейшем рассмотрим более общий случай изгиба - поперечный изгиб. Косой изгиб относится к сложному сопротивлению стержней и будет рассмотрен позднее.

3.2. Типы опор балок.

Опоры балок, рассматриваемых как плоские системы, бывают трех основных типов.

/info/3/img/3_2.gif

1. Подвижная шарнирная опора (рис. 3.2, а). Такая опора не препятствует вращению конца балки и его перемещению вдоль плоскости качения. В ней может возникать только одна реакция, которая перпендикулярна плоскости качения и проходит через центр катка.

Схематичное изображение подвижной шарнирной опоры дано на рис. 3.2, б.

Подвижные опоры дают возможность балке беспрепятственно изменять свою длину при изменении температуры и тем самым устраняют возможность появления температурных напряжений.

2. Неподвижная шарнирная опора (рис. 3.2, в). Такая опора допускает вращение конца балки, но устраняет поступательное перемещение ее в любом направлении. Возникающую в ней реакцию можно разложить на две составляющие - горизонтальную и вертикальную.

3. Жесткая заделка, или защемление (рис. 3.2, г). Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре может в общем случае возникать реакция, которую обычно раскладывают на две составляющие (вертикальную и горизонтальную) и момент защемления (реактивный момент).

Балка с одним заделанным концом называется консольной балкой или просто консолью.

Если опорные реакции могут быть найдены из одних уравнений статики, то балки называют статически определимыми. Если же число неизвестных опорных реакций больше, чем число уравнений статики, возможных для данной задачи, то балки называют статически неопределимыми. Для определения реакций в таких балках приходится составлять дополнительные уравнения - уравнения перемещений.


3.3. Определение опорных реакций.

Рассмотрим несколько примеров.

Пример 3.1. Определить опорные реакции консольной балки (рис. 3.3).

Решение. Реакцию заделки представляем в виде двух сил Az и Ay, направленных, как указано на чертеже, и реактивного момента MA.

Составляем уравнение равновесия балки.

1. Приравняем нулю сумму проекций на ось z всех сил, действующих на балку. Получаем Az = 0. При отсутствии горизонтальной нагрузки горизонтальная составляющая реакции равна нулю.

2. То же, на ось y: сумма сил равна нулю. Равномерно распределенную нагрузку q заменяем равнодействующей qaз, приложенной посредине участка aз:

Ay - F1 - qaз = 0,

откуда

Ay = F1 + qaз.

Вертикальная составляющая реакции в консольной балке равна сумме сил, приложенных к балке.

3. Составляем третье уравнение равновесия. Приравняем нулю сумму моментов всех сил относительно какой-нибудь точки, например относительно точки А:

/info/3/img/t3_1.gif

откуда

/info/3/img/t3_2.gif

/info/3/img/3_3.gif

Знак минус показывает, что принятое вначале направление реактивного момента следует изменить на обратное. Итак, реактивный момент в заделке равен сумме моментов внешних сил относительно заделки.

Пример 3.2. Определить опорные реакции двухопорной балки (рис. 3.4). Такие балки обычно называют простыми.

Решение. Так как горизонтальная нагрузка отсутствует, то Az = 0
/info/3/img/t3_3.gif
/info/3/img/3_5.gif

Вместо второго уравнения можно было использовать условие того, что сумма сил по оси Y равна нулю, которое ы данном случае следует применить для проверки решения:
25 - 40 - 40 + 55 = 0, т.е. тождество.

Пример 3.3. Определить реакции опор балки ломаного очертания (рис. 3.5).

Решение.
/info/3/img/t3_4.gif
т.е. реакция Ay направлена не вверх, а вниз. Для проверки правильности решения можно использовать, например, условие того, что сумма моментов относительно точки В равна нулю.

Математика примеры решения задач