Основы электротехники и электроники Методы расчета цепей

Работа электрической машины постоянного тока в режиме генератора   Любая электрическая машина обладает свойством обратимости, т.е. может работать в режиме генератора или двигателя. Если к зажимам приведенного во вращение якоря генератора присоединить сопротивление нагрузки, то под действием ЭДС якорной обмотки в цепи возникает ток

Электростатические измерительные преобразователи. Действие электростатических преобразователей основано на изменении параметров электрического поля под воздействием измеряемой величины. В простейшем случае электростатический преобразователь представляет собой конденсатор, параметры которого изменяются под воздействием измеряемой величины за счет изменения расстояния между двумя или более электродами, диэлектрической проницаемости или площади электродов.

Измерение и контроль параметров в растениеводстве Технологические процессы в растениеводстве неразрывно связаны с периодическим (в зависимости от сезонных или климатических условий) или с непрерывным (например, в процессе переработки продукции) измерением и контролем разнообразных параметров. Основные из них влажность, температура, параметры растений, механические свойства и состав почвы и питательных растворов и др. При этом необходимо измерять и контролировать параметры как на этапе производства, так и при переработке продукции, что повышает роль метрологического обеспечения при оценке качества продукции.

Генераторы с самовозбуждением. Принцип самовозбуждения генератора с параллельным возбуждением   Недостатком генератора с независимым возбуждением является необходимость иметь отдельный источник питания. Но при определенных условиях обмотку возбуждения можно питать током якоря генератора.  Самовозбуждающиеся генераторы имеют одну из трех схем: с параллельным, последовательным и смешанным возбуждением

Механические характеристики электродвигателей постоянного тока  Рассмотрим  двигатель с  параллельным возбуждением в установившемся режиме работы

Мгновенная мощность

Кривая мгновенной мощности у конденсатора будет поднята над осью абсцисс на высоту, равную активной мощности потерь.

У идеальной емкости R=0 и Rи=0 в первую четверть периода энергия запасается в электрическом поле C и численно равна энергии, отданной источником.

Во вторую четверть периода запасенная энергия возвращается источнику.

За полпериода (за период) происходит обмен энергией без потерь.

У реальной емкости:

В первую четверть периода ИЭЭ отдает определенную энергию, но в электрическом поле C запасается только часть её (за вычетом потерь энергии в активном сопротивлении).

Во вторую четверть периода конденсатор отдает энергию в цепь, но источнику достанется только её часть, за вычетом потерь.

Гармонический ток и напряжение в идеальной индуктивности

Напряжение на L опережает ток на 90°(четверть периода).

Гармонический ток и напряжение в реальной индуктивности

За первую четверть периода только часть энергии, отданной источником, запасается магнитным полем.

Во вторую четверть периода только часть запасенной энергии отдается источнику.

График мощности приподнят над осью абсцисс на значение потерь.

Угол δ характеризует потери.

Основы символического метода расчета электрических цепей

(комплексный метод)

Имеется в виду математический аппарат, положенный в основу расчета.

Известно, что любая гармоническая функция может быть представлена вектором на комплексной плоскости, проекции вектора изменяются: на Ox – по косинусу, на Oy – по синусу.

 ‑ это характеристика гармонического колебания на момент времени t=0. Если известны ω и комплексная амплитуда, то можно восстановить гармоническую функцию и высчитать её значение.

Т.о.  является символом гармонической функции.

Применяя ,  и  можно рассчитать цепь с гармоническим током, содержащую реактивные элементы R, C и L, используя известные методы расчета цепей постоянного тока.

Классическим методом цепь пришлось бы рассчитывать, используя эти же метода, но записанные в виде дифференциальных уравнений.

e(t) – гармоническая ЭДС

Цепь линейная (нет нелинейных элементов, т.е. элементов, сопротивление которых зависит от тока и напряжения).

Протекающий ток изменяется по гармоническому закону:

Запишем 2-ой закон Кирхгофа:

Каждая из компонент может быть представлена вектором на комплексной плоскости и охарактеризована комплексной амплитудой.

 (*)

Символический метод расчета можно применять только к гармоническим функциям. Однако это не значит, что с его помощью нельзя рассчитать цепь, в которой действует негармоническая периодическая ЭДС, т.к. периодическая функция может быть разложена в ряб Фурье, где элементом разложения является гармоническая функция. Преобразование непериодической функции в периодическую можно произвести, приняв T=∞.

Комплексное сопротивление цепи

Согласно (*) можем получить:

Тогда полное комплексное сопротивление:

 модуль комплексного сопротивления

фазовый угол

Найдется такая частота ω0 (резонансная), для которой X(ω)=0: ω0L=1/ω0C. На этой частоте цепь не имеет реактивности, в ней остается только активное сопротивление R и значение тока будет максимальным: Im=Em/R. На всех других частотах ток будет меньше.

Разобранная цепь представляет собой последовательный колебательный контур, ω0 – резонансная частота этого контура: резонансная частота

волновое сопротивление

Колебательный контур характеризуется добротностью:

Интервал частот с обеих сторон ω0, на границах которого значение тока ↓ в  раз по сравнению с Im(ω0), называется полосой пропускания.

Для последовательного колебательного контура характерен резонанс напряжений: на резонансной частоте ω0 напряжение на реактивном элементе в Q раз больше, чем напряжение источника.

Математика примеры решения задач