Сопромат Примеры решения задач

Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Электротехника
ТОЭ типовые задания примеры
решения задач
Радиотехнические схемы Генераторы
Лабораторные работы
Контрольная работа
Конспект лекций
Электротехника, электроника
Линейные цепи постоянного тока
Переменный ток. Приборы и оборудование
Комплексный метод расчета
цепей синусоидального тока
Электрические цепи с
взаимной индуктивностью
Расчет неразветвленных
магнитных цепей
Электромагнитные устройства
Трансформаторы
Однофазный асинхронный двигатель
Электронно-оптические приборы
Электронные усилители и генераторы
Источники питания электронных устройств
Измерение тока и напряжения
Работа электрической машины
постоянного тока в режиме генератора
История искусства
Стили в архитектуре и дизайне
Стиль АРТДЕКО
Париж оставался центром стиля арт-деко
Развитие традиционной архитектуры
Восточного Китая
ТВОРЧЕСТВО ЛЕ КОРБЮЗЬЕ
ТВОРЧЕСТВО  ВАЛЬТЕРА ГРОПИУСА
Людвиг Мис ван дер Роэ
ЭКОЛОГИЧЕСКИЙ ДОМ
Здание Калифорнийской Академии наук
История дизайна
Дизайн в моде
Литература о дизайне
Линия борьбы с академизмом
в искусстве и эстетике
Объяснение промышленного искусства
Дизайнерское проектирование
для промышленности
ТОМАС МАЛЬДОНАДО
Джордж Нельсон
ДИЗАЙН В ДЕЙСТВИИ
фирма «Вестингауз»
„ОЛИВЕТТИ" Фабрика пишущих машин
Активное развитие дизайна «Оливетти»
НОН-ДИЗАЙН
ДИЗАЙН В ДЕЙСТВИИ
авторские концепции дизайна
ДИЗАЙН И ИСКУССТВО
Европейский «артистический» дизайн
Первичность деятельности художника
Современный элитарный дизайн
Художественное проектирование
Индустриальный дизайн
Стиль в дизайне. Понятие "фирменный стиль"
Абстракционизм
ПЕРВЫЕ ШКОЛЫ ДИЗАЙНА Баухауз
ДИЗАЙН В ПРЕДВОЕННУЮ ЭПОХУ
ПОСЛЕВОЕННЫЙ ДИЗАЙН
ДИЗАЙН 60-х
АЛЬТЕРНАТИВНЫЙ ДИЗАЙН
Государственный дизайн
ДИЗАЙН-ТЕХНОЛОГИИ БУДУЩЕГО
Прикладное искусство Византии IV–VII века
Поверхности
Начертательная геометрия
Задачи по математике
Математика Методические указания
к выполнению контрольных работ
Решение линейных дифференциальных уравнений и систем
операционным методом
Область сходимости степенного ряда
Математический анализ
Пример решения типового задания
Найти значение производной функции
Линейная алгебра
Задачи по физике
Оптика
Электростатика
Энергетика
Системы теплоснабжения
Региональный опыт энергосбережения
Тепловые насосы
Проектирование аккумуляторов теплоты
Малая гидроэнергетика
Ветроэнергетика в России
Гелиоэнергетика
Активные гелиосистемы отопления зданий
Гидротермальные системы
Закрытые системы геотермального
теплоснабжения
Мини-теплоэлектростанция на отходах
Энергия морских течений
Водородная экономика
Основы технической механики
Сопротивление материалов
Контрольная работа
Шарнирное соединение деталей
Вычисления моментов инерции
однородных тел
 

Моменты инерции сечения.

Осевым, или экваториальным, моментом инерции сечения называется геометрическая характеристика, численно равная интегралу:
относительно оси х

/info/1/img/f_6.gif          (1.6)

относительно оси у

/info/1/img/f_6a.gif

где у - расстояние от элементарной площадки dA до оси х (см. рис. 1.1.); х - расстояние от элементарной площадки dA до до оси у; D - область интегрирования.

Полярным моментом инерции сечения называется геометрическая характеристика, определяемая интегралом вида

/info/1/img/f_7.gif          (1.7)

где p - расстояние от площадки dA до точки (полюса) (см. рис. 1.1.) относительно которой вычисляется полярный момент инерции.

Осевой и полярный моменты инерции - величины всегда положительные.

Действительно, независимо от знака координаты произвольной площадки соответствующее слагаемое положительно, так как в него входит квадрат этой координаты.

Центробежным моментом инерции сечения называется геометрическая характеристика, определяемая интегралом вида

/info/1/img/f_8.gif          (1.8)

где х,у - расстояния от площадки dA до осей x и y.

Моменты инерции измеряются в единицах длины в четвертой степени (по СИ - м4, хотя для прокатных профилей по ГОСТу - см4).

Центробежный момент инерции может быть положительным, отрицательным и, в частном случае, равным нулю.

/info/1/img/1_3.gif

Если взаимно перпендикулярные оси х и у или одна из них являются осями симметрии фигуры, то относительно таких осей центробежный момент инерции равен нулю. Действительно, для симметричной фигуры всегда можно выделить два элемента ее площади (рис. 1.3.), которые имеют одинаковые ординаты у и равные, но противоположные по знаку абсциссы х. Составляя сумму произведений xydA для таких элементов, т.е. вычисляя интеграл (1.8.), получают в результате нуль.

Легко доказать, что полярный момент инерции относительно какой-либо точки равен сумме осевых моментов инерции относительно двух взаимно перпендикулярных осей, проходящих через эту точку.

Действительно, из рис. 1.1 видно, что

/info/1/img/t1_5.gif
Подставив это значение p2 в выражение (1.7.) получим

/info/1/img/t1_6.gif

Следовательно, Ip = Ix + Iy.



1.3. Моменты инерции простых сечений.

/info/1/img/1_5.gif

1. Прямоугольник (рис. 1.5,а). Вычислим момент инерции сечения относительно оси Х0, проходящей через центр тяжести параллельно основанию.

За dA примем площадь бесконечно тонкого слоя dA = bdy. Тогда
/info/1/img/t1_7.gif
Итак,
/info/1/img/f_11.gif          (1.11)

Аналогично, получим
/info/1/img/f_12.gif          (1.12)

2. Круг (рис. 1.5,б). Сначала определим полярный момент инерции относительно центра круга
/info/1/img/t1_8.gif

За dA принимаем площадь бесконечно тонкого кольца толщиной dp
/info/1/img/t1_9.gif

тогда
/info/1/img/t1_10.gif

Следовательно,
/info/1/img/f_13.gif          (1.13)

Теперь легко найдем Ixo. Действительно, для круга согласно формуле (1.9.), имеем Iр = 2Iхо = 2Iуо, откуда
/info/1/img/f_14.gif          (1.14)

2. Кольцо (рис. 1.5,в). Осевой момент инерции в этом случае равен разности моментов инерции внешнего и внутреннего кругов
/info/1/img/f_15.gif          (1.15)
где c = d/D.

Аналогично полярный момент инерции
/info/1/img/f_16.gif          (1.16)

2. Треугольник (рис. 1.5,г). Определим момент инерции относительно оси x1, параллельной основанию и проходящей через вершину треугольника
/info/1/img/t1_11.gif

За dA примем площадь бесконечно тонкой трапеции KBDE, площадь которой можно считать равной площади прямоугольника:

dA = bydy,

где by - длина прямоугольника.

Легко получить из подобия треугольников

by = yb/h;

тогда
/info/1/img/f_17.gif          (1.17)

Определим момент инерции относительно центральной оси; для этого используем формулу (1.10)
/info/1/img/f_18.gif          (1.18)

Определим момент инерции относительно оси, проходящей через основание:
/info/1/img/f_19.gif          (1.19)

 

 
Математика примеры решения задач