Сопромат Примеры решения залач

Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Электротехника
ТОЭ типовые задания примеры
решения задач
Радиотехнические схемы Генераторы
Лабораторные работы
Контрольная работа
Конспект лекций
Электротехника, электроника
Линейные цепи постоянного тока
Переменный ток. Приборы и оборудование
Комплексный метод расчета
цепей синусоидального тока
Электрические цепи с
взаимной индуктивностью
Расчет неразветвленных
магнитных цепей
Электромагнитные устройства
Трансформаторы
Однофазный асинхронный двигатель
Электронно-оптические приборы
Электронные усилители и генераторы
Источники питания электронных устройств
Измерение тока и напряжения
Работа электрической машины
постоянного тока в режиме генератора
История искусства
Стили в архитектуре и дизайне
Стиль АРТДЕКО
Париж оставался центром стиля арт-деко
Развитие традиционной архитектуры
Восточного Китая
ТВОРЧЕСТВО ЛЕ КОРБЮЗЬЕ
ТВОРЧЕСТВО  ВАЛЬТЕРА ГРОПИУСА
Людвиг Мис ван дер Роэ
ЭКОЛОГИЧЕСКИЙ ДОМ
Здание Калифорнийской Академии наук
История дизайна
Дизайн в моде
Литература о дизайне
Линия борьбы с академизмом
в искусстве и эстетике
Объяснение промышленного искусства
Дизайнерское проектирование
для промышленности
ТОМАС МАЛЬДОНАДО
Джордж Нельсон
ДИЗАЙН В ДЕЙСТВИИ
фирма «Вестингауз»
„ОЛИВЕТТИ" Фабрика пишущих машин
Активное развитие дизайна «Оливетти»
НОН-ДИЗАЙН
ДИЗАЙН В ДЕЙСТВИИ
авторские концепции дизайна
ДИЗАЙН И ИСКУССТВО
Европейский «артистический» дизайн
Первичность деятельности художника
Современный элитарный дизайн
Художественное проектирование
Индустриальный дизайн
Стиль в дизайне. Понятие "фирменный стиль"
Абстракционизм
ПЕРВЫЕ ШКОЛЫ ДИЗАЙНА Баухауз
ДИЗАЙН В ПРЕДВОЕННУЮ ЭПОХУ
ПОСЛЕВОЕННЫЙ ДИЗАЙН
ДИЗАЙН 60-х
АЛЬТЕРНАТИВНЫЙ ДИЗАЙН
Государственный дизайн
ДИЗАЙН-ТЕХНОЛОГИИ БУДУЩЕГО
Прикладное искусство Византии IV–VII века
Поверхности
Начертательная геометрия
Задачи по математике
Математика Методические указания
к выполнению контрольных работ
Решение линейных дифференциальных уравнений и систем
операционным методом
Область сходимости степенного ряда
Математический анализ
Пример решения типового задания
Найти значение производной функции
Линейная алгебра
Задачи по физике
Оптика
Электростатика
Энергетика
Системы теплоснабжения
Региональный опыт энергосбережения
Тепловые насосы
Проектирование аккумуляторов теплоты
Малая гидроэнергетика
Ветроэнергетика в России
Гелиоэнергетика
Активные гелиосистемы отопления зданий
Гидротермальные системы
Закрытые системы геотермального
теплоснабжения
Мини-теплоэлектростанция на отходах
Энергия морских течений
Водородная экономика
Основы технической механики
Сопротивление материалов
Контрольная работа
Шарнирное соединение деталей
Вычисления моментов инерции
однородных тел
 

Моменты инерции сложных фигур.

Момент инерции сложной фигуры равен сумме моментов инерции ее составных частей
/info/1/img/f_20.gif          (1.20)

Это непостредственно следует из свойств определенного инетеграла
/info/1/img/t1_12.gif
где А = А1 + А2 + ...

Таким образом, для вычисления момента инерции сложной фигуры надо разбить ее на ряд простых фигур, вычислить моменты инерции этих фигур и затем просуммировать эти моменты инерции.

Указанная теорема справедлива также и для центробежного момента инерции.

Моменты инерции прокатных сечений (двутавров, швеллеров, уголков и т.д.) приводятся в таблицах сортамента.

Главные оси инерции и главные моменты инерции.

При изменении угла /info/1/img/t1_13.gifвеличины Ix1, Iy1 и Ix1y1 изменяются. Найдем значение угла, при котором Ix1 и Iy1 имеют экстремальные значения; для этого возьмем от Ix1 или Iy1 первую производную по /info/1/img/t1_13.gifи преравняем ее нулю:

/info/1/img/t1_14.gif

или

/info/1/img/t1_15.gif

откуда

/info/1/img/f_28.gif          (1.28)

Эта формула определяет положение двух осей, относительно одной из которых осевой момент инерции максимален, а относительно другой - минемален.

Такие оси называют главными. Моменты инерции относительно главных осей называются главными моментами инерции.

Значения главных моментов инерции найдем из формул (1.23) и (1.24), подставив в них /info/1/img/t1_16.gifиз формулы (1.28), при этом используем известные формулы тригонометрии для функций двойных углов.

После преобразований получим следующую формулу для определения главных моментов инерции:

/info/1/img/f_29.gif          (1.29)

Исследуя вторую производную /info/1/img/t1_17.gifможно установить, что для данного случая (Ix < Iy) максимальный момент инерции Imax имеет место относительно главной оси, повернутой на угол /info/1/img/t1_16.gifпо отношению к оси х, а минимальный момент инерции - относительно другой, перпендикулярной оси. В большинстве случаев в этом исследовании нет надобности, так как по конфигурации сечений видно, какая из главных осей соответствует максимуму момента инерции.

Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями.

Во многих случаях удается сразу определить положение главных центральных осей. Если фигура имеет ось симметрии, то она является одной из главных центральных осей, вторая проходит через центр тяжести сечения перпендикулярно первой. Сказанное следует из того обстоятельства, что относительно оси симметрии и любой оси, ей перпендикулярной, центробежный момент инерции равен нулю.

В случае если два главных центральных момента инерции сечения равны между собой, то у этого сечения любая центральная ось является главной, и все главные центральные моменты инерции одинаковы (круг, квадрат, шестиугольник, равносторонний шестиугольник).

Математика примеры решения задач