Начертательная геометрия Виды поверхностей и их проекции Линейчатая поверхность Позиционные задачи Метрические задачи Проекции геометрических тел Построение аксонометрических проекций

Точка и плоскость, прямая и плоскость

Дана плоскость общего положения Б ( АВС), (рисунок 3-9).

Построим точку М на плоскости Б и точку N под плоскостью Б.

Чтобы построить точку на плоскости, необходимо:

1) на этой плоскости Б провести (или выделить) любую прямую l, для чего провести прямую l через две точки принадлежащие плоскости (в нашем случае т.т. А и 1);

2) на этой прямой взять произвольную точку, например М (свойство принадлежности).

Чтобы построить точку N под заданной плоскостью, необходимо вначале, как сказано выше, найти точку, принадлежащую плоскости, а затем, на, виде спереди изображение ее опустить ниже прямой l (значит и ниже плоскости)

Деление отрезка в заданном отношении

10. ОПРЕДЕЛЕНИЕ ДЛИНЫ ОТРЕЗКА И УГЛОВ ЕГО НАКЛОНА К ПЛОСКОСТЯМ УРОВНЯ.

11. УСЛОВИЯ ВИДИМОСТИ НА КОМПЛЕКСНОМ ЧЕРТЕЖЕ.

9. Деление отрезка в заданном отношении

Дан отрезок общего положения АВ (рисунок 4-1).

Необходимо разделить этот отрезок точкой С в отношении, например, 3:2, т.е. АС /CB=3/2.

Для этого через один из концов отрезка (точку А или В) на любом из видов (спереди или сверху) проводим в произвольном направлении луч и на нем откладываем пять одинаковых (т.к. 3+2=5) отрезков произвольной длины.

Конец последнего (на луче) отрезка соединяем с другим концом отрезка АВ, а затем через точку 2 проводим СЗ//А5. Точка С делит отрезок АВ в требуемом отношении (на основании свойства прямых, пересеченных параллельными прямыми - теорема ФАЛЕСА).

10. ОПРЕДЕЛЕНИЕ ДЛИНЫ ОТРЕЗКА И УГЛОВ ЕГО НАКЛОНА К ПЛОСКОСТЯМ УРОВНЯ.

При решении различных общегеометрических задач часто возникает необходимость определения натуральной величины отрезка по его комплексному чертежу.

Если отрезок принадлежит прямой уровня - горизонтали, фронтали или профильной прямой, то в этом случае натуральная величина отрезка имеется на одном из видов:

 для горизонтали - на виде сверху;

 для фронтали - на виде спереди;

 для профильной прямой - на виде слева.

Если же отрезок принадлежит прямой общего положения, то на всех проекциях (видах спереди, сверху, слева) его изображение будет меньше самого отрезка.

Для определения натуральной величины отрезка и углов наклона его к плоскостям уровня применяют способ прямоугольного треугольника (рисунок 4-2).

Рассмотрим АВВ(рисунок 4-2). Здесь АВ=АВ; ВВ=Н (разность высот точек А и В - концов отрезка.); АВ*= АВ (проекция отрезка).

Таким образом если, имея комплексный чертеж отрезка, мы сумеем построить прямоугольный треугольник катетами которого будут –1)одна из проекций отрезка и 2)разность измерений концов отрезка, отмеряемых от соответствующей первому катету плоскости проекций (от Г- высот, от Ф - глубин, от П – широт), то гипотенуза полученного треугольника будет равна натуральной величине отрезка.

При этом угол между гипотенузой треугольника и проекцией отрезка равен углу наклона отрезка к плоскости проекций (Г, Ф, или П соответственно), (рисунок 4-2б).

Строить такой прямоугольный треугольник по двум катетам можно в любом удобном месте чертежа.


Пример 1. Определить угол наклона отрезка АВ к фронтальной плоскости (рисунок 4-3).

Для определения указанного угла удобно построить прямоугольный треугольник, приняв фронтальную проекцию отрезка в качестве его первого катета. Вторым катетом треугольника в этом случае будет разность глубин концов отрезка измеренная на горизонтальной проекции (виде сверху).

Угол α между первым катетом и гипотенузой и будет искомым. Попутно определится и длина отрезка равная длине гипотенузы треугольника.

Пример 2. Отложить на проекциях прямой m от точки А отрезок АВ, натуральная величина которого равна 50 мм (рисунок 4-4).Можно предложить такой способ решения задачи. Возьмем на указанной прямой произвольную точку С и определим натуральную величину полученного отрезка АС способом прямоугольного треугольника.

Поскольку на гипотенузе треугольника имеем натуральные длины отрезков, отложим здесь от точки А заданную величину 50 мм. Затем проведем прямую параллельно второму катету треугольника до пересечения с проекцией отрезка АС.

Полученная точка будет являться искомой точкой В. Вторую проекцию точки В находим проецируя точку В на вторую проекцию отрезка.

Задание поверхностей с помощью определителей позволяет просто решать позиционные задачи на принадлежность одних геометрических образов другим.

 На примере, приведенном на рис.15, решим задачу на принадлежность точки D плоскости C(АВС).

 Дано:

C(АВС) – плоскость общего положения;

D(D2) - точка (DÌ C); D1 = ?

 Решение:

  Дополним чертеж прямой а, которая а Ì C  и а2 (А2, D2).

Дальнейший ход решения задачи показан на чертеже.

  Из вышесказанного можно сделать вывод, что:

точка принадлежит поверхности, если она принадлежит линии, лежащей на данной поверхности;

линия принадлежит поверхности, если она отвечает закону образования данной поверхности.


Начертательная геометрия