Элементы линейной алгебры Математический анализ Вычислить пределы Найдите производные функции Построить графики функций Изменить порядок интегрирования в интеграле Найти объем тела Найти массу тела

Математика примеры решения задач контрольной работы

ЗАДАНИЕ 12. Вычислить массу дуги кривой () при заданной плотности :

1)  

2) (.

3) (.

РЕШЕНИЕ.

1) Рассматривается случай параметрического задания кривой (). Массу плоской кривой можно вычислить с помощью криволинейного интеграла первого рода: . Для вычисления его нужно свести к определенному интегралу от функции одной переменной по отрезку по формуле:

.

Найдем  ,

, так как для  функция . Вычислим массу  с помощью определенного интеграла:

=

Ответ. =256.

2) Кривая () задана явным выражением. В случае явного задания кривой криволинейный интеграл первого рода сводится к определенному следующим образом  :

.

Найдем  .

Для массы  получим:

.

Ответ. .

3) Наконец, рассмотрим случай кривой, заданной в полярной системе координат, в этом случае масса  может быть определена по формуле

.

Вычислим

Для определения массы кривой получим определенный интеграл

.

Ответ. =.


Найти объем тела, ограниченного указанными поверхностями