Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Элементы линейной алгебры Математический анализ Вычислить пределы Найдите производные функции Построить графики функций Изменить порядок интегрирования в интеграле Найти объем тела Найти массу тела

Математика примеры решения задач контрольной работы

УКАЗАНИЯ К ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ №1

 Задача 2. Составить уравнение линии, для каждой точки которой отношение расстояний до точки А(3; 0) и до прямой x=12 равно числу =0,5. Полученное уравнение привести к простейшему виду и построить кривую.

Решение. Пусть М(х; у)—текущая (произвольная) точка искомого геометрического множества точек. Опустим перпендикуляр МВ на прямую х=12 (рис. 2). Тогда B(12; у).

По условию задачи По формуле (1) из предыдущей задачи

Тогда

Полученное  уравнение представляет собой эллипс вида

Определим фокусы эллипса F1(-c; 0) и F2 (c; 0). Для эл­липса справедливо равенство b2= а2—с2, откуда

c2= a2-b2 =9 и c=3.

То есть, F1(-3; 0) и F2 (3; 0)— фокусы эллипса (точки F2 и А совпадают).

Эксцентриситет эллипса

Задача 3. Составить уравнение линии, для каждой точки которой ее расстояние до точки A(3; —4) равно расстоянию до прямой у=2. Полученное уравнение привести к простейшему виду и построить кривую.

Решение. М(х; у)—текущая точка искомой кривой. Опустим из точки М перпендикуляр MВ на прямую у =2 (рис. 3). Тогда В(x; 2). Так как МА=МВ, то

=  или

.

Полученное уравнение определяет параболу с вершиной в точке О'(3; —1). Для приведения уравнения параболы к простейшему (каноническому) виду, положим Тогда в системе координат Х'О'У´ уравнение пара­болы принимает следующий вид У' = . В системе координат Х'О'У´ строим параболу.

Векторная алгебра и аналитическая геометрия в пространстве


Найти объем тела, ограниченного указанными поверхностями