Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Пример решения типового задания Найти значение производной функции Линейная алгебра Исследовать функцию Предел последовательности Практикум по решению задач Изменить порядок интегрирования в интеграле

Решение типового варианта контрольной работы

Вычислить предел функции: .

Решение. Здесь имеем неопределенность вида , и предел сводится ко второму замечательному пределу.

Ответ: .

19. Вычислить предел функции: .

Решение. В данном случае мы имеем неопределенность вида . Для ее раскрытия сделаем замену . Тогда  при .

Ответ: .

20. Вычислить предел функции: .

Решение. Функция  ограничена, значит,  бесконечно малая функция при . Поэтому .

Ответ: .

Практикум по решению задач

Дифференцируемые функции

1. Найти производную функции.

Сначала преобразуем данную функцию:

2. Найти производную функции .

3. Найти производную функции

4. Найти производную функции

5. Найти производную функции

6. Найти предел .

Как видно, при попытке непосредственного вычисления предела получается неопределенность вида . Функции, входящие в числитель и знаменатель дроби удовлетворяют требованиям теоремы Лопиталя.

f¢(x) = 2x + ; g¢(x) = ex; ;

7. Найти предел .

; ; .

Если при решении примера после применения правила Лопиталя попытка вычислить предел опять приводит к неопределенности, то правило Лопиталя может быть применено второй раз, третий и т.д. пока не будет получен результат. Естественно, это возможно только в том случае, если вновь полученные функции в свою очередь удовлетворяют требованиям теоремы Лопиталя.


Найти частные производные второго порядка функции [an error occurred while processing this directive]