Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Пример решения типового задания Найти значение производной функции Линейная алгебра Исследовать функцию Предел последовательности Практикум по решению задач Изменить порядок интегрирования в интеграле

Решение типового варианта контрольной работы

Найти уравнения касательной плоскости и нормали к поверхности  в точке М(2,4,6).

Ñ Обозначив через   левую часть уравнения поверхности, найдем
       По формуле (7.2) имеем уравнение касательной плоскости  или . По формулам (7.3) находим уравнения нормали в параметрической форме , отсюда можно получить канонические  уравнения нормали .

16. Исследовать на экстремум функцию .

Ñ Из необходимого условия экстремума функции (теорема 9.7) имеем систему  решая которую получаем критические точки  . Определим характер критических точек по достаточным условиям экстремума. Находим  . В точке : , , Следовательно, - седловая точка. В точке :  , , поэтому - точка минимума функции z; .

17. Найти наибольшее и наименьшее значения функции  в области D, заданной неравенствами .

Ñ Область D ограничена частью параболы  и отрезком прямой x = 4 (рис.9.3). 1) Находим критические точки из необходимого условия экстремума функции:  Решение системы: x =32,5, y = –13. Найденная критическая точка  не принадлежит D.

2) Исследуем функцию на границе. а) На участке . Функция  сводится к функции одной переменной  .Находим критические точки функции : . На  x = 4 и точки . б) На линии  . Функция  сводится к функции , . Находим критические точки функции : , , , , . На   и получаем точки , .

3) Вершины ломаной в точках  и . 4) Вычисляем значения функции f в точках  , , , . Итак, , .

18. Функцию  разложить по формуле Тейлора в окрестности точки(2,-1).

Ñ Имеем . Вычислим последовательно частные производные данной функции: ,

.

Все последующие производные тождественно равны нулю. Значения производных в точке (2,-1):

. По формуле (7.4) получаем искомое разложение

.

19. Функцию  разложить по формуле Тейлора в окрестности точки (1;1) до членов второго порядка включительно.

Ñ Имеем . В соответствии с формулой (7.4) вычислим производные 1-го и 2-го порядков данной функции и их значения в точке (1,1).

,,

  . По формуле (7.4) имеем , где .


Найти частные производные второго порядка функции [an error occurred while processing this directive]