Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Пример решения типового задания Найти значение производной функции Линейная алгебра Исследовать функцию Предел последовательности Практикум по решению задач Изменить порядок интегрирования в интеграле

Решение типового варианта контрольной работы

КРАТНЫЕ ИНТЕГРАЛЫ РИМАНА.

Практикум по решению задач

1. Область S задана уравнениями границы: .

Изобразить указанную область и записать как правильную.

Ñ Область S – треугольник, ограниченный прямыми   (рис. 3). Точки пересечения прямых есть O(0;0), A(2; 1), B(2; 2).

а) Область S – правильная в направлении Oy и любая прямая L, проходящая через внутреннюю точку области, пересекает прямую  и прямую . Поэтому область задается системой неравенств:

б) Эта же область является правильной и в направлении Ox, но для задания ее системой неравенств необходимо область S разбить на две части S1 и S2 (рис. 4). Выразим в уравнениях границы x через независимую переменную y : OB: x=y, OA: x=2y. Для определения границ изменения переменной y проведем прямые, параллельные оси Ox. Прямая L1 пересекает прямую OB: x=y и прямую OA: x=2y; прямая L2 пересекает прямую OB: x=y и прямую AB: x=2. Итак,  и , .

2. Точки из области D удовлетворяют неравенству  (a>0) , т.е. . Изобразить данную область и записать как правильную.

Ñ  Преобразуя неравенство , получим . Геометрически область D есть круг радиуса a/2 c центром в точке С(a/2; 0). Из уравнения границы  следует  или . Область D может быть записана как правильная в направлении Oy (любая прямая, проходящая через внутреннюю точку D параллельно Oy, пересекает полуокружность и полуокружность OML:  (рис. 5),

.


  Рис. 5 Рис. 6

Область D можно записать как правильную в направлении Ox (прямая, проходящая через внутреннюю точку D параллельно Ox пересекает полуокружность  и полуокружность +  (рис. 6)), и   

3. Вычислить повторный интеграл .

интегрируя внутренний интеграл по «y», полагаем «x» постоянным½=

= .


Найти частные производные второго порядка функции [an error occurred while processing this directive]