Найдём частные производные функции http://matklub.ru
Пример решения типового задания Найти значение производной функции Линейная алгебра Исследовать функцию Предел последовательности Практикум по решению задач Изменить порядок интегрирования в интеграле

Решение типового варианта контрольной работы

КРАТНЫЕ ИНТЕГРАЛЫ РИМАНА.

Вычислить , где  .

Ñ Область D ограничена линиями: – эллипс с полуосями a и b, – эллипс с полуосями  и , y=0 – прямая (ось Ox), – прямая (рис. 11).

Анализ границы области указывает на целесообразность перехода к эллиптическим полярным координатам по формулам: , . Уравнения границы области в координатах  будут: 1), 2)  , 3) , 4) . Итак, область интегрирования в координатах  есть

. Тогда 

.

Задания.

Записать символически правильную в направлении Oy область , если ее проекция на плоскость Oxz, в свою очередь, есть правильная область.

Записать символически правильную в направлении Ox область , если ее проекция на плоскость Oyz есть правильная область.

10. Область V ограничена поверхностями  и z=0. Изобразить область и записать как правильную: а) в направлении Oz, б) в направ лении Ox.

Ñ Область V — круговой конус с боковой поверхностью, описываемой уравнением конической поверхности , основанием, лежащим на плоскости z=0, с вершиной в точке M(0;0;2) и осью, совпадающей с Oz (рис. 12).Область V - правильная во всех направлениях Ox, Oy, Oz. При z=0 из уравнения  имеем - уравнение окружности радиуса 2; таким образом, в основании конуса круг. а) Рассмотрим область V как правильную в направлении Oz. Из уравнения  имеем . Для точек области V имеем: . Проекция области V на плоскость Oxy есть  (рис. 13), поэтому  , где .Так как S — правильная область, то   или . Поэтому требуемая запись будет    или  .

б) Рассматривая область V как правильную в направлении Ox, из уравнения  имеем . Линии пересечения плоскости Oyz и конической поверхности находятся из решения системы уравнений:  ; в результате имеем  прямые в плоскости Oyz.

Итак, проекцией V на плоскость Oyz является область D — треугольник со сторонами z=y+2, z = –y+2, z=0 (рис. 14), поэтому  , где .

Так как область D – правильная, то рассматривая ее как правильную в направлении Oy, имеем , а потому  

11. Вычислить , где область V ограничена поверхностями: .

Ñ Поверхности и  есть параболические цилиндры с образующими, параллельными  — плоскости. Область V – правильная в направлении Oz, а потому  для точек, принадлежащих V (рис. 15).

Проекция V на плоскость Oxy есть правильная область S, ограниченная линиями  и  (рис. 16), а потому,  и .

Тогда = =

==½см. (2.3)½= = =


Найдём частные производные функции http://matklub.ru
Найти частные производные второго порядка функции [an error occurred while processing this directive]