Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Пример решения типового задания Найти значение производной функции Линейная алгебра Исследовать функцию Предел последовательности Практикум по решению задач Изменить порядок интегрирования в интеграле

Решение типового варианта контрольной работы

Пример 12. Найти длину дуги кривой

Решение.

Найдем сначала неопределенный интеграл. Сделаем замену переменной (подстановка Эйлера):

  (*)

Выразим x через t.

 

Подставляем в интеграл, учитывая выражение (*) для корня.

Теперь по формуле Ньютона-Лейбница получаем результат:

В задании VII требуется вычислить объем тела, образованного вращением фигуры, ограниченной графиками функций. Причем функция может быть задана в декартовых, параметрических или полярных координатах.

Если объем V тела существует и  есть площадь сечения тела плоскостью, перпендикулярной к оси Ох в точке x, то

.

Объем тела, образованного вращением вокруг оси Ох криволинейной трапеции   , где  - непрерывная однозначная функция, равен

Если криволинейная трапеция, ограниченная кривой , , вращается вокруг оси Оу, то объем тела вращения вычисляется по формуле:

.

Если криволинейный сектор, ограниченный кривой  и лучами  вращается вокруг полярной оси, то объем тела вращения равен:

Рассмотрим типовые задачи:

Пример 13. Найти объем тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями  и .

Решение. Т.к. область значений функции  - , то фигура, ограниченная заданными линиями будет лежать в верхней полуплоскости.

Найдём абсциссы точек пересечения кривых. Для этого решим систему уравнений:

Имеем , .

Тогда, объем тела:

Пример 14. Фигура, ограниченная кривой ,   и осью Ox, вращается вокруг оси Оy. Найти объем тела вращения.

Решение. Если t=0, то x=4, y=0, если t=, то x=0, y=0. Причем  и . Следовательно, объем тела вращения равен:

Пример 15. Фигура, ограниченная линией , вращается вокруг полярной оси. Найти объем тела вращения.

Решение. Фигура симметрична относительно полярной оси, поэтому для вычисления объема достаточно вращать ее верхнюю половину .


Найти частные производные второго порядка функции [an error occurred while processing this directive]