Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Пример решения типового задания Вычислить тройной интеграл Переход к полярным координатам в двойном интеграле Тройной интеграл в декартовых координатах Замена переменных в тройном интеграле Найти частные производные функции

Решение типового варианта контрольной работы

Задание 5.

а) Найти общее решение дифференциального уравнения *.

 Решение. Так как производная в данном случае является функцией, зависящей только от переменной x, то его решение может быть получено в результате последовательного интегрирования: .

 Ответ. .

б) Найти общее решение дифференциального уравнения .

Решение. Поскольку данное уравнение не содержит в явном виде переменной , то замена   позволяет преобразовать его в уравнение первого порядка с разделяющимися переменными .

;

. Учтя, что  – произвольная постоянная, то полученное решение можно упростить: .

Ответ. .

в) Найти общее решение дифференциального уравнения .

Решение. Так как решаемое уравнение не содержит явно переменной , будем получать его решение с помощью введения новой переменной , откуда , так как в этом случае мы вычисляем производную сложной функции. Заданное уравнение в результате такой замены будет иметь вид: . Решение  является особым, и, делая обратную замену в этой ситуации, запишем: . Оставшееся уравнение  является уравнением в разделяющихся переменных: . Интегрируя последнее равенство, получим . Выразим теперь функцию : . Делая вновь обратную замену , получим: . В данном уравнении можно разделить переменные: . Интегрируя последнее выражение, получим . Получившаяся неявная функция также является решением заданного дифференциального уравнения.

Ответ. ; .

Задание 6. Решить уравнение .

Решение. Правая часть уравнения представляет собой дифференциальное уравнение с постоянными коэффициентами. Выпишем общее решение однородного дифференциального уравнения второго порядка . Так как корнями соответствующего характеристического уравнения  являются числа , то общее решение данного уравнения, как известно, имеет вид . Правая часть исходного уравнения  не позволяет найти частное решение  неоднородного уравнения методом подбора (или неопределенных коэффициентов) поэтому воспользуемся для его нахождения методом вариации произвольных постоянных. Поэтому будем искать частное решение   в виде: , предполагая, что здесь  и  (мы воспользовались видом найденной фундаментальной системы решений однородного уравнения), а  и решения следующей системы дифференциальных уравнений:

  таким образом .

Из второго уравнения выпишем . Проинтегрировав, получим  (постоянную интегрирования будем полагать равной нулю). Теперь, подставляя значение  в первое уравнение системы, получим дифференциальное уравнение для функции : . Вновь интегрируя, запишем: .

Таким образом, частное решение исходного уравнения имеет вид , выпишем общее решение неоднородного дифференциального уравнения

Ответ. .


Криволинейный интеграл по координатам (криволинейный интеграл второго рода) [an error occurred while processing this directive]