Радиоэлектроника Монтаж радиоэлементов и микросхем
Пример решения типового задания Вычислить тройной интеграл Переход к полярным координатам в двойном интеграле Тройной интеграл в декартовых координатах Замена переменных в тройном интеграле Найти частные производные функции

Решение типового варианта контрольной работы

Задача 8. В вычислительный центр коллективного пользования с тремя компьютерами поступают заказы от предприятий на вычислительные работы. Если заняты все три компьютера, то вновь поступающий заказ не принимается и предприятие вынуждено обратиться в другой вычислительный центр. Среднее время работы с одним заказом составляет 3 часа. Интенсивность потока заявок 0.25 (з/час). Найти предельные вероятности состояний и показатели эффективности работы вычислительного центра.

Решение. В теории массового обслуживания широкое распространение имеет специальный класс случайных процессов – так называемый процесс гибели и размножения. Рассмотрим упорядоченное множество состояний системы . Переходы могут осуществляться из любого состояния только в состояния с соседними номерами, т.е. из состояния   возможны переходы только либо в состояние , либо в состояние . В предположении, что все потоки событий, переводящие систему из одного состояние в следующее простейшие с соответствующими интенсивностями  или , для отыскания предельных вероятностей, можно использовать систему уравнений Колмогорова для стационарных процессов. Правило для составления уравнений Колмогорова звучит следующим образом: слева в уравнениях стоит предельная вероятность данного состояния , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа – сумма произведений интенсивностей всех потоков, входящих в i-ое состояние на вероятности тех состояний, из которых эти потоки выходят. Поток заявок характеризуется интенсивностью (заявок/час), поток обслуживания – интенсивностью (заявок/час). Согласно условию задачи (заявок/час), (заявок/час). В нашей задаче система массового обслуживания может находиться в одном из четырех состояний: - когда все три компьютера свободны; - когда загружен работой только один компьютер; - когда заняты два компьютера; - когда все компьютеры заняты. В предельном, стационарном режиме система алгебраических уравнений для вероятностей состояний имеет вид:

.

К этой системе добавляется нормировочное уравнение .

.

Решая эту систему уравнений, получим:

 .

То есть в стационарном режиме работы вычислительного центра в среднем 47,6% времени нет ни одной заявки, 35,7% - имеется одна заявка, 13,4% - две заявки и 3,3% времени – три заявки (заняты все вычислительные мощности).

Вероятность отказа в обслуживании (когда заняты все три компьютера), таким образом .

Относительная пропускная способность центра , то есть в среднем из каждых 100 заявок вычислительный центр обслуживает 96,7 заявок.

Абсолютная пропускная способность , то есть в один час в среднем обслуживается 0,242 заявки.

Среднее число занятых компьютеров есть математическое ожидание числа занятых каналов , то есть каждый компьютер будет занят обслуживанием заявок в среднем лишь на %.

При оценке эффективности работы вычислительного центра необходимо сопоставить доходы от выполнения заявок с потерями от простоя дорогостоящих компьютеров и выбрать компромиссное решение.


Радиоэлектроника Монтаж радиоэлементов и микросхем
Криволинейный интеграл по координатам (криволинейный интеграл второго рода) [an error occurred while processing this directive]