Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Пример решения типового задания Вычислить тройной интеграл Переход к полярным координатам в двойном интеграле Тройной интеграл в декартовых координатах Замена переменных в тройном интеграле Найти частные производные функции

Решение типового варианта контрольной работы

ДВОЙНЫЕ ИНТЕГРАЛЫ

Пример 1. Вычислить интеграл , где .

Решение: Для прямоугольной области применяем формулу (3):

  

Сначала вычисляем внутренний интеграл, считая переменную x константой:

.

После подстановки пределов интегрирования по y, получаем функцию от х I(x)=2x+4, которую интегрируем по отрезку [1,2]:

Пример 2. Вычислить интеграл , где .

Решение: Как и в примере 1, двойной интеграл сводится к повторному по формуле (3): 

При вычислении внутреннего интеграла по у, считаем х константой, которую по первому свойству двойного интеграла (см. п.1.1), выносим за знак интеграла:

В данном примере удобнее воспользоваться еще одним свойством двойного интеграла. Если подынтегральная функция f(x,y)=X(x)Y(y) является произведением двух функций, одна из которых зависит только от x, а вторая - от y, и область интегрирования является прямоугольной , то двойной интеграл равен произведению повторных интегралов, т.е. . В этом случае результат вычисления внутреннего интеграла есть число. Поэтому решение задачи 2 кратко можно записать так:

Пример 3. Вычислить интеграл , где область D ограничена линиями x=0, y=0, x=π, y=1+cosx.

Решение: Область D является простой областью типа (I), так как любая прямая, параллельная оси Оу, пересекает границу области только в двух точках (рис.7). При любом фиксированном значении х из отрезка [0,π] координата y меняется от y=0 до y=1+cosx . Поэтому для вычисления интеграла воспользуемся формулой (1):

Отметим, что для вычисления данного интеграла можно было воспользоваться и формулой (2), т.к. область D также является простой областью вида (II). Но в этом случае границы области нужно задавать в виде х=х(у), что приводит к более громоздким вычислениям.


Криволинейный интеграл по координатам (криволинейный интеграл второго рода) [an error occurred while processing this directive]