Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Пример решения типового задания Вычислить тройной интеграл Переход к полярным координатам в двойном интеграле Тройной интеграл в декартовых координатах Замена переменных в тройном интеграле Найти частные производные функции

Решение типового варианта контрольной работы

Переход к полярным координатам в двойном интеграле.

Пример 2. Вычислить , если область D ограничена окружностью , лежащей в первой четверти, и прямыми y=x и .

Решение: Область D изображена на рис.21. Переведем ее границы в полярные координаты: уравнение окружности имеет вид r=a , а отрезки прямых y=x   являются лучами  и . Проводя лучи φ=const , определяем, что координата r изменяется от 0 до а. Тогда по формуле (5) получаем:

 Рис.21

Пример 3. В двойном интеграле  перейти к полярным координатам и расставить пределы интеграции в том и другом порядке, если область D ограничена кривой .

Решение: Чтобы построить область D, приведем уравнение кривой к каноническому виду, для чего выделяем полный квадрат по переменной х: , . Получаем уравнение окружности с центром на оси Ох в точке х=а, у=0, радиуса а, при этом окружность касается оси Оу (рис.22а,б).

 


 Рис.22а Рис.22б

Переведем границу области D в полярные координаты, для этого удобнее воспользоваться уравнением окружности в виде :  или . Область D находится между лучами  и  и проводя

лучи при , определяем, что координата r изменяется от 0 в начале координат до значения радиуса на окружности, т.е. до значения  (рис.22а). Тогда по формуле (5) расставляем пределы интегрирования:

Чтобы расставить пределы интегрирования в другом порядке, определим границы изменения координаты r. Для этого проведем координатные линии r=const, пересекающие область D, и определим окружности, которые касаются нашей области. Очевидно, что это будут линии r=0 и r=2а, так что r изменяется в пределах от 0 до а (рис.22б).

Для нахождения границ изменения переменной φ уравнение окружности   разрешим относительно φ:   или . Для нижней ветви окружности берется знак «-», а для верхней ветви – знак «+». Теперь по координатным линиям r=const, которые пересекают область D, определяем границы изменения φ: от значения на нижней ветви окружности до значения на верхней ветви окружности. В результате по формуле (6) получаем:


Криволинейный интеграл по координатам (криволинейный интеграл второго рода) [an error occurred while processing this directive]