Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Пример решения типового задания Вычислить тройной интеграл Переход к полярным координатам в двойном интеграле Тройной интеграл в декартовых координатах Замена переменных в тройном интеграле Найти частные производные функции

Решение типового варианта контрольной работы

Пример 4. В двойном интеграле  перейти к полярным координатам и расставить пределы интеграции в том и другом порядке, если область D ограничена линиями

Решение: Кривая является уравнением окружности с центром в точке (0,1): . При  выбирается верхняя половина круга – это и будет область D . Переведем границы области в полярные координаты, при этом уравнение окружности имеет вид . Если из него выразить φ, получаем  для правой ветки окружности и   - для левой. Прямая y=1 в полярных координатах имеет уравнение  или  и  для отрезков прямых, лежащих в первой и во второй четверти соответственно. Нанесем координатные линии φ=const, откуда определяем, что область D расположена между лучами  и , а радиус изменяется от значения на отрезке прямой y=1 до значения на дуге окружности (рис.23а). Тогда получаем:

.

 Рис.23а Рис.23б

Проведем линии r=const и определяем, что область заключена между координатными линиями r=1 и r=2, а координатная линия  проходит через точки (±1,1), в которых пересекаются границы области - окружность и прямая (рис.23б). Поэтому D необходимо разбить на две простые области относительно φ:  и  и пределы интегрирования в двойном интеграле расставляются так:

 

Замечание: В некоторых случаях, если область интегрирования в двойном интеграле ограничена окружностью , удобнее делать замену . При такой замене осуществляется параллельный перенос системы координат в центр окружности, а якобиан преобразования при этом не изменяется, т.е. J=r (предлагается убедиться в этом самостоятельно). В частности, если в примере 4 ввести замену , то уравнение окружности  преобразуется к виду r=1, а область интегрирования Ω в координатах Оrφ становится прямоугольной: .

Пример 5. Вычислить интеграл , где область D – лежащая в первой четверти часть эллиптического кольца .

Замечание: В случае, когда область интегрирования в двойном интеграле является эллипс или его часть, то вводят обобщенные полярные или

эллиптические координаты . При этом J=abr (проверить самостоятельно), а выражение  преобразуется в выражение .

Решение: Перейдем к эллиптическим координатам, при этом границы эллиптического кольца принимают вид r=1 и r=2, а вся область расположена между лучами φ=0 и . Поэтому интеграл вычисляем следующим образом:


Криволинейный интеграл по координатам (криволинейный интеграл второго рода) [an error occurred while processing this directive]