Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Пример решения типового задания Вычислить тройной интеграл Переход к полярным координатам в двойном интеграле Тройной интеграл в декартовых координатах Замена переменных в тройном интеграле Найти частные производные функции

Решение типового варианта контрольной работы

 Тройной интеграл в декартовых координатах.

 Тройной интеграл является обобщением интеграла Римана на случай функции трех переменных. Определение тройного интеграла, а также его свойства аналогичны определению и свойствам двойного интеграла.

Определение: Тройным интегралом от непрерывной функции u=f(x,y,z) по ограниченной кубируемой (измеримой по Жордану) области G называется

, где - разбиение области G на кубируемые части Gi ,  - максимальный диаметр объема разбиения ΔVi.

Вычисляют тройной интеграл также как и двойной, сведением к повторным интегралам, при этом порядок следования переменных выбирается так, чтобы упростить проводимые вычисления.

Пусть область G из пространства Охуz проектируется в область D плоскости Оху так, что всякая прямая, параллельная оси Оz и проходящая внутри области D, пересекает границу тела только в двух точках. В общем случае такая область ограничена снизу поверхностью , сверху – поверхностью , а с боков – цилиндрической поверхностью с образующими, параллельными оси Оz (рис.30). В частных случая боковая поверхность цилиндра может превратиться в линию (рис.31).

 Рис.30 Рис.31

 

Тройной интеграл по такой области вычисляется по формуле:


  (15)

Здесь внутренний интеграл  берется по z от нижней границы области G до ее верхней границы при фиксированных, но произвольных в области D значениях х и у. В результате получается некоторая функция от х и у, которая затем интегрируется в области D.

Наиболее простой вид формула (15) принимает в случае, когда областью интегрирования является прямоугольный параллелепипед, ограниченный плоскостями x=a, x=b, y=c, y=d, z=p, z=q (a<b, c<d, p<q) и пределы интегрирования по всем трем переменным являются константами

  (16)

Если область G имеет более сложную форму, то ее разбивают на конечное число областей, удовлетворяющих приведенным выше условиям.

Замечание: Аналогичные определения и формулы могут получены и тогда, когда область G проектируется в область D, лежащую в плоскости Охz или Оуz.

Пример 1: Вычислить интеграл  , где G – область, ограниченная плоскостями x=0, y=0, z=0, x+y+z=1.

Решение: Для правильной расстановки пределов интегрирования построим область G (рис.32). Область интегрирования G представляет фигуру, проекция которой на плоскость Oху есть треугольник с координатами вершин (0,0,0), (1,0,0), (0,1,0).

  Рис.33

Очевидно, что нижняя граница области G – плоскость z=0, а верхняя – плоскость z=1-х-у, это и будут пределы интегрирования по z. Для расстановки пределов по x и y в области D воспользуемся опытом вычисления двойных интегралов. Область D приведена на рис.33. Из рисунка видно, что x меняется в пределах от 0 до 1, а у от 0 до значения на прямой y=1-x:


Криволинейный интеграл по координатам (криволинейный интеграл второго рода) [an error occurred while processing this directive]