Летающий спутник

Летающий спутник

Заработок для студента

Заработок для студента

 Заказать диплом

Заказать диплом

 Cкачать контрольную

Cкачать контрольную

 Курсовые работы

Курсовые работы

Репетиторы онлайн по любым предметам

Репетиторы онлайн по любым предметам

Выполнение дипломных, курсовых, контрольных работ

Выполнение дипломных, курсовых, контрольных работ

Магазин студенческих работ

Магазин студенческих работ

Диссертации на заказ

Диссертации на заказ

Заказать курсовую работу или скачать?

Заказать курсовую работу или скачать?

Эссе на заказ

Эссе на заказ

Банк рефератов и курсовых

Банк рефератов и курсовых

Пример решения типового задания Вычислить тройной интеграл Переход к полярным координатам в двойном интеграле Тройной интеграл в декартовых координатах Замена переменных в тройном интеграле Найти частные производные функции

Решение типового варианта контрольной работы

Пример 1: Вычислить , где G – шар .

Решение: Границей области G является сфера x2+y2+z2=1, уравнение которой в сферических координатах имеет вид r=1. Так как r – расстояние до начала координат, то для любой точки шара выполняется неравенство . Угол φ вводится в плоскости Oxy так же, как и в полярных координатах. Проекция шара на плоскость Oxy - круг, а для круга . Угол отклонения ψ от плоскости Oxy принимает наибольшее значение  для точек, лежащих на оси Оz при z>0 и наименьшее значение  на оси Oz при z<0. Поэтому для шара всегда . Таким образом, при переходе к сферическим координатам шар G преобразуется в область Ω, которая является прямоугольным параллелепипедом: , , .

Пример 2: Вычислить , где G – часть шара , лежащая в первом октанте (x>0, y>0, z>0).

 


Рис.40

Решение: Область G приведена на рис. 40. Как уже говорилось, для всех точек шара справедливо . Проекцией области G на плоскость Оху является часть круга, лежащего в первой четверти, поэтому . Угол ψ принимает в данной области наименьшее значение ψ=0 для точек координатной плоскости z=0 , а наибольшее значение   для точек на оси Оz при z>0. Расставляем пределы интегрирования:

Пример 3: Вычислить тройной интеграл , если область G ограничена сферой .

 Рис.41

Решение: Преобразуем уравнение сферы к каноническому виду, выделив полный квадрат по z: . Сфера с центром в точке (0,0,1/2) радиуса 1/2, касается начала координат и расположена выше координатной плоскости z=0 (рис. 41). Ее уравнение в сферических координатах имеет вид r=sinψ, так что для всех внутренних точек выполняется неравенство . Так как проекцией области G на плоскость Оху является круг, то .Угол отклонения ψ  для данной области изменяется в пределах . Расставляем пределы интегрирования:


Криволинейный интеграл по координатам (криволинейный интеграл второго рода) [an error occurred while processing this directive]